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IDENTIFICATION OF HEAT TRANSFER BETWEEN THE 

CASTING AND THE MOLD IN INGOTLESS ROLLING 

S. L. Balakovskii, E. F. Baranovskii, 
N. V. Diligenskii, and P. V. Sevast'yanov 

UDC 536.24 

A method is proposed for determining the heat flux inside a roll-mold on the basis 
of solution of the inverse heat-conduction problem by the gradient method. 

The study of casting processes in a roll-type mold in order to select efficient produc- 
tion schemes entails the development of a set of mathematical models capable of predicting 
the thermal and thermal-stress states of equipment and products [i]. As is known [2, 3], 
the most important factor which affects solidification is heat transfer between the casting 
and the mold. At the same time, direct measurement of temperatures and heat fluxes on the 
mold surface is not possible because the transducers fail from thermal and mechanical loads 
[4]. It was proposed in [5] that the contact temperature be determined by means of a so- 
called natural thermocouple. Here, the contacting bodies themselves act as the thermoelec- 
trodes. However, such a method is not sufficiently reliable and, moreover, does not permit 
consideration of the temperature distribution along the contact. Given these circumstances, 
it is best to obtain temperature measurements at internal points and to use inverse-problem 
methods to establish the thermal parameters on the contact surface [6]. 

A sketch of the equipment used for casting in a roll-type mold is shown in Fig. i. 
Since the radius of the roll is considerably smaller than its length, we will assume that 
there is no heat transfer in the axial direction. Then the thermal problem for quasisteady 
operation of the roll is described as follows in cylindrical coordinates (p, ~) : 

v a~ p 09 - --_9 + 92 a~ ' 

0 < ~ < 2 = ,  ~ < 9 < 1 ,  

OT o=oo-- ~R 0p - - - f -  (TI0=0o - -  ~oo) ,  ( 2 )  
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Fig. i. Unit for casting 
in a roll-type mold: i) 
melt; 2) casting; 3) roll; 
4) surface undergoing 
cooling. 

oT I _ R (3) 
Op ,~=~- T q(~)' 

Tlw= o = Tiw=2~, ( 4 )  

OT ] --aT. I . (5) 
O~ ~=o 09 ~=~ 

The coordinate 9 in mathematical model (1-5) is reckoned from the beginning of con- 
tact of the role with the forming skin. Ignoring heat losses from the roll to the air out- 
side the contact arc, we obtain q = 0 at ~0<@<2=. 

The solution of thermal problem (1-5) should reduce to establishing a cause-and-effect 
relationship between the limiting heat flux and the temperature field inside the roll: 

V(% p) = Teoo+ S q (9 ' )G(9 - -~ ' ,  p)d~'. (6) 
0 

Equat ion  (6) in t u rn  makes i t  p o s s i b l e  to  use  the  known t empera tu re  T(~,p) to  
establish the function q(~) and to thus identify the contact heat transfer between the 
casting and the roll. 

A sizable number of studies, such as [7-11], has been devoted to the problem of deter- 
mining the temperature field in a rotating roll. According to [i0, ii], at high speeds of 
rotation, the temperature field in a cylindrical body is represented by the sum 

T (9, P) = T(P) + T (9, P), (7)  

in which the constant (i.e. independent of the angle 9 ) component T is determined by the 
total heat flux to the roll, while the periodic component T penetrates the roll to an insig- 
nificant depth. Thus, we can consider the temperature field to be two-dimensional. Proceed- 
ing on this basis, we can easily obtain expressions for the constant and periodic components 
of the Green function: 

~ ( 9 ,  ~; v)  = -  

2=~ \ P0 
2 ~  

I 

+ V2~- ~=~ , ] / k + 9 t 2 =  

where F(9, ~) = exp ~ - 9  Ko ]/(~-t-~2); Ko (z) 

the relative distance from the surface of the roll. Equation (8) is exact, while (9) is 
approximate with an error no greater than 1% at v > i00, ~ < 0.05. 

Then the connection between the limiting heat flux and the temperature field in the 
roll can be written in the form: 

(8) 

(9) 

is a modified Bessel function; g = 1 - 0 is 
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where 

s 

c~ = R t' q(q~')d~' 

f8 (% ~; ~,  v > 0, 
(% ~) 

- -  ~Lo (q, + 2a, ~; 7), m < 0; 

i s  t h e  h e a t  f l u x  p e r  u n i t  l e n g t h  o f  t h e  r o l l .  

Equation (i0) can be simplified by considering the fact that the roll contacts with 
the casting on a section which is small compared to the circumference of a circle (~/2~ S 0.i). 
As a result, the expression for the temperature field in the surface region of the roll is 
written in the form 

R-[T(% ~ ) - - T 0 ( ~ ) ] - - j ' q ( ~ ' ) e x p  ( ~ - - ~ ' )  K0 ] / ( ~ _ ~ , ) 2 q _ ~  d ~ ' - - % ( $ ) ,  (11)  
0 

where T0(~) = T(0, ~) is the temperature at the inlet of the roll-casting contact zone at 
the depth g; sq(~) is a correction for the periodicity of the process which causes the 
right side of (ii) to vanish at ~----2n However, the value of sq(~) is no greater than 
1% of the first term for small values of ~ and can be discarded. 

Since the kernel of Eq. (ii) decreases with an increase in $ and v, it is logical to 
propose that thermal boundary perturbations will decay with increasing depth from the roll 
surface. Thus, in the solution of the inverse boundary-value problem in the formulation 
(ii), small oscillations in inlet temperature may destabilize the heat flux being estab- 
lished. The error of the inverse problem can be evaluated quantitatively by the method pro- 
posed in [6]. For example, if a sinusoidal change in temperature over time with the fre- 
quency m0 is assigned on the surface of a semi-infinite body, then the thermal oscillations 
will decrease with increasing depth by the law exp (--x~mo/2a) �9 The character of change in 

the amplitude of the temperature oscillations is similar for formulation (ii), i.e. is pro- 

portional to exp (--~/2) Here, ~ is the frequency of the oscillations with respect to 
the angular coordinate ~ . This fact means that the heat sensor must be positioned as 
close to the roll surface as possible. 

Thus, in solving the inverse problem, we need to use a regularizing algorithm to deter- 
mine the function q(@) from Eq. (ii). This can be done by introducing an extremal formu- 
lation of the problem and taking advantage of the iterative principle of regularization [6]: 

(k§ (k) (k) (12) 
q (~p)= q ( q ~ ) + A q ( ~ ) ,  k = 0 ,  1, 2 . . . . .  

(k) 

where  t h e  c o r r e c t i o n  Aq(~) i s  c a l c u l a t e d  f rom t h e  c o n d i t i o n  o f  t h e  g r e a t e s t  r e d u c t i o n  o f  
t h e  below o b j e c t i v e  f u n c t i o n a l  in  e ach  i t e r a t i o n  

q:0 

J(q) = i' [T(% $)- -  T* (~)]Zd% (13)  
0 

In  Eq. ( 1 3 ) ,  t h e  v a l u e  o f  ~ i s  f i x e d  and i s  d e t e r m i n e d  by t h e  d e p t h  o f  t h e  h e a t  s e n s o r .  

A s s i g n i n g  t h e  i n c r e m e n t s  6q(~) o f  t h e  s o u g h t  f u n c t i o n  q(~) we can o b t a i n  a f o r -  
mula f o r  c a l c u l a t i n g  t h e  g r a d i e n t  o f  t h e  f u n c t i o n a l  

Oq((f) 2 i ' [T(~ ' ,  ~ ) - - r * ( r  (~'--qo) K~ i _9 ] / (~ ,_q , )2q_~z  d(p'. 
r 

The a c t u a l  i n i t i a l  d a t a  o f t e n  c o n t a i n s  h i g h - f r e q u e n c y  components  f rom b o th  t h e  n o i s e  
o f  t h e  m e a s u r i n g  equ ipmen t  and f rom t h e r m a l  f l u c t u a t i o n s .  In  t h e  p r e s e n t  c a s e ,  t h e  p r e s -  
enc e  o f  t h e s e  components  i s  c o n n e c t e d  w i t h  t h e  f r e e z i n g  o f  t h e  s k i n  and i s  g o v e r n e d  t o  a 
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Fig. 2. Distribution of the boundary value of 
heat flux (a) and the corresponding roll-sur- 
face temperature (b) over the arc of contact 
with the casting (zeroth initial approximation, 
iterations stopped with an additional measure- 
ment): i) ~ = 0.485; 2) 0.833 sec -z q, W/m2; 

TW, ~ ~ , rad. 

large extent by the hydrodynamics of the melt and the microstructure of the forming skin. 
It is important that these fluctuations do not affect the position of the solid-liquid phase 
boundary. However, in the solution of the inverse problem, they may lead to oscillations of 
the sought function. The use of gradient methods of functional minimization makes it pos- 
sible to circumvent this difficulty by stopping the iterations before signs of instability 
of the function begin to appear. A rigorously substantiated criterion for terminating 
regularizing gradient algorithms is the error criterion proposed in [12]. However, its 
successful use requires having a fairly accurate estimate of the random error of the inlet 
temperatures. This requirement is often not met in practice. An alternative method of 
stopping the iteration is to stop it after an additional measurement is made [13]. The use 
of this method in the solution of the inverse problem for a rotating cylindrical body should 
prove especially effective, since its realization in the present case does not necessarily 
require the installation of a second transducer. Readings from the thermocouple for dif- 
ferent roll rotations can be used as the main and auxiliary input data. All periodic proces- 
ses should obviously afford such an advantage. 

Figure 2 shows results of analysis of experimental data on the casting of lead on an 
ingot-less rolling unit in the laboratory of contact heat transfer of the Mogilev branch of 
the Physicotechnical Institute, Academy of Sciences of the Belorussian SSR. Roll-molds made 
of steel 45 (R = 0.I mm, R 0 = 0.05 m) were cooled with water at a temperature of 40~ (~ = 
1080 W/(m2.K)). 

The temperature at a point of the roll 1 mm from the surface was measured with a 
Chromel--Alumel thermocouple (channel diameter 1.2 mm). Thermoelectrodes 0.2 mm in diameter 
were welded to the bottom of the channel and insulated with fluoroplastic. The electrical 
signal from the sensor was transmitted through a mercury pickup and recorded on an oscillo- 
graph. 

The disturbance of the thermophysical uniformity of the roll due to the presence of 
the thermocouple caused a distortion of the temperature field which reached 10-20% [14]. 
Failure to allow for this leads to a systematic error in the established heat flux on the 
roll surface and overestimation of the degree of reduction of the casting - which determines 
the quality of the resulting strip. It should also be noted that the distortion of the tem- 
perature field is determined not only by the geometric and thermophysical parameters of the 
sensor, but also by the thermal regime of the roll, i.e. by the character of distribution of 
the established thermal conditions. As a result, the disturbing effect of the thermocouple 
was accounted for by using the two-model iterative algorithm proposed in [15]. 

Numerical calculations were performed on an ES-1045 computer. The machine time expen- 
ded on analyzing one experiment by the conjugate gradient method was about 50 minwith a 
step for the angular coordinate A~/314. The thermophysical properties of the materials 
of the roll and the thermocouple electrodes were taken from [16]. 
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The result of determination of the function q(~) can be explained as follows. On 
the section where the skin is freezing, there is a gradual reduction in heat flux in the 
roll due to a reduction in the temperature difference between the roll surface and the skin 
and to separation of the skin from the surface. The subsequent sharp reduction in heat flux 
in the roll is connected with a decrease in the thermal resistance of the contact due to an 
increase in the pressure of the casting on the mold in the deformation zone. 

In conclusion, we noted that the method described above can also be used to study the 
processes of ingot-rolling and cutting. 

NOTATION 

T, temperature field in the roll; Tcoo, temperature of cooling liquid; T*, inlet tem- 
perature; e, heat-transfer coefficient in convective cooling; a, %, thermal conductivity 
and diffusivity of the roll; ~, angular velocity; v = wR2/a, dimensionless speed of rota- 
tion; q(~), heat flux on the roll surface; P0, dimensionless internal radius of the roll. 

LITERATURE CITED 

i. S. L. Balakovskii, E. F. Baranovskii, P. V. Sevast'yanov, and L. G. Dymova, Control 
and Optimization of Industrial Heating Processes [in Russian], Kuibyshev (1986), pp. 
67-72. 

2. G. F. Balandin, Principles of the Theory of the Formation of a Casting [in Russian], 
Moscow (1976). 

3. V. G. Lisienko, V. I. Lobanov, and B. I. Kitaev, Thermophysics of Metallurgical Proces- 
ses [in Russian], Moscow (1982). 

4. E. F. Baranovskii, V. M. II'yushenko, A. A. Stepanenko, and V. N. Tyulyukin, Izv. Akad. 
Nauk BSSR, Ser. Fiz. Tekh. Nauk, No. 3, 62-66 (1979). 

5. O. V. Fokin, Vestn. Mashinostr., No. ii, 56-59 (1963). 
6. O. M. Alifanov, Identification of Heat-Transfer Processes in Aircraft [in Russian], 

Moscow (1979). 
7. W. Haubitzer, Arch. Eisenhuttenw., 46, No. ii, 701-703 (1975). 
8. G. I. Kaplanov, V. T. Zhadan, and G. M. Gerashchenko, Izv. Vyssh. Uchebn. Zaved., Chern. 

Metall., No. ii, 128-132 (1977). 
9. V. N. Zaveryukha, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. ii, 80-83 (1973). 

i0. N. V. Diligenskii and Yu. I. Ivanov, Inzh.-Fiz. Zh., 21, No. 6, 1068-1073 (1971). 
ii. N. V. Diligenskii, "Asymptotic calculations of the thermal regimes of processes in 

machining in welding," Engineering Sciences, Doctoral Dissertation, Kiev (1973). 
12. O. M. Alifanov and S. V. Rumyantsev, Inzh.-Fiz. Zh., 39, No. 2, 253-258 (1980). 
13. O. M. Alifanov and I. E. Balashova, Inzh.-Fiz. Zh., 48, No. 5, 851-860 (1985). 
14. S. L. Balakovskii and E. F. Baranovskii, Inzh.-Fiz. Zh., 52, No. i, 131-134 (1987). 
15. S. L. Balakovskii, Inzh.-Fiz. Zh., 53, No. 6, 1014-1020 (1987). 
16. V. S. Chirkin, Thermophysical Properties of Materials in Nuclear Engineering [in 

Russian], Moscow (1968). 

827 


